
Advanced Coverage Metrics
for Object-Oriented Software

Executive Summary

The use of structural coverage metrics to measure the thoroughness of a test set is a
well-understood technique. However, the application of the technique to object-
oriented software presents new challenges. This paper presents object-oriented context
coverage, a new way to measure coverage for object-oriented systems.

IPL is an independent software house founded in 1979 and based in Bath. IPL has been
accredited to ISO9001 since 1988, and TickIT accredited since 1991. IPL has developed
and supplies the AdaTEST, Cantata and Cantata++ software verification products.
AdaTEST, Cantata and Cantata++ have been produced to these standards.

Copyright

This document is the copyright of IPL Information Processing Ltd. It may not be
copied or distributed in any form, in whole or in part, without the prior written
consent of IPL.

IPL
Eveleigh House
Grove Street
Bath
BA1 5LR
UK
Phone: +44 (0) 1225 444888
Fax: +44 (0) 1225 444400
email ipl@iplbath.com

Last Update:28/10/99 10:28
File: Advanced Coverage Metrics.doc



©IPL Information Processing Ltd

2

1. Introduction
The use of structural coverage metrics to measure the thoroughness of a test set is a
well-understood technique. However, the application of the technique to object-
oriented software presents new challenges.

Traditional structural coverage metrics such as statement coverage, branch coverage
and condition coverage measure how well the bodies of each method have been tested.
Unfortunately these traditional metrics do not take into account the object-oriented
features of the software under test. In particular, the use of polymorphism and the
encapsulation of state-dependent behaviour behind well-defined class interfaces are
effectively ignored. Since polymorphism and encapsulation of behaviour are major
features of any object-oriented design, metrics which ignore them are insufficient for
determining whether the software under test has been thoroughly tested.

2. A New Way to Measure Coverage
To address this Cantata++ introduces an extension to traditional structural coverage –
context coverage. Context coverage is a way of gathering more data on how the
software under test executes.

The context coverage approach can be applied to the testing of both polymorphic and
state-dependent behaviour. The approach can also be extended to aid in the testing of
multi-threaded applications.

By using these additionalobject-oriented context coveragemetrics, in combination
with traditional coverage metrics, we can ensure that the structure of the code has
been fully exercised and thus have high confidence in the quality of our test set.

Three varieties of OO context coverage metrics are defined.Inheritance context
coveragemetrics are designed to help measure how well the polymorphic calls in the
system have been tested.State-based context coveragemetrics are designed to
improve the testing of classes with state-dependent behaviour.User-defined context
coveragemetrics are also supported, allowing the application of the context coverage
approach to other cases where traditional structural coverage metrics are inadequate,
such as multi-threaded applications.

3. How Should We Test Polymorphism?
Traditional structural coverage metrics are inadequate as a measure of how well
polymorphic1 code has been tested. Consider the following fragment of code:

class Base {
public:

void foo() { ... helper(); ... }
void bar() { ... helper(); ... }

1 Polymorphism is the ability to perform operations on an object without knowing exactly how the
object will implement the operation. In C++, polymorphism can be achieved at run-time through the
combination of several language features: (public) class inheritance, overriding virtual methods and
using base class pointers or references to refer to derived class objects. Polymorphism can also be
achieved at compile-time using templates.



©IPL Information Processing Ltd

3

private:
virtual void helper() { ... }

};
class Derived : public Base {
private:

virtual void helper() { ... }
};
void test_driver() {

Base base;
Derived derived;
base.foo(); // Test Case A1
derived.bar(); // Test Case A2

}

In this example, test case A1 invokesBase::foo() on the base object which in turn
calls virtual functionhelper() on the base object, invokingBase::helper() .

In test case A2, note thatbar() is not overridden inDerived , so the inherited
method Base::bar() is invoked on the derived object, which in turn calls
helper() on the derived object, invokingDerived::helper() .

Does thetest_driver() function fully exercise theBase class? Does it fully
exercise theDerived class?

Let’s assume for now that the functions each contain linear code only – there are no
decisions or loops at all.

Using a traditional structural coverage metric (such as statement coverage) as our
guide we would answer yes to both questions since runningtest_driver() would
achieve 100% coverage ofBase::foo() , Base::bar() , Base::helper() and
Derived::helper() .

3.1. Compile-Time Polymorphism With Templates
The C++ template feature provides a form of compile-time polymorphism. As with
inheritance-based polymorphism, a routine from one class can be invoked on objects
of different types. The template class corresponds to the base class where the routine
is defined. The instantiations correspond to derived classes which inherit the routine.

The template routine can in turn call “helper” routines, where the particular helper
routine invoked will depend on the type of the object. For example, a list template
might invoke the contained object’s copy constructor. The copy constructor invoked
will be the one corresponding to the type of the contained object, which will be
specific to a particular instantiation of the list template.

For the remainder of this paper, only inheritance-based (run-time) polymorphism will
be discussed. However, the principles and techniques involved apply equally to
template-based (compile-time) polymorphism.

3.2. What Did We Miss?
We have not fully tested the interactions betweenBase and Derived . Specifically,
we have not tested the interactions betweenBase::bar() andBase::helper() or
the interactions betweenBase::foo() andDerived::helper() .



©IPL Information Processing Ltd

4

Obviously, just becauseBase::foo() works withBase::helper() does not mean
that it will automatically work when used withDerived::helper() . Although
Derived::helper() has the same interface asBase::helper() , they have
different implementations.

For our testing to bereally thorough we should exercise bothfoo() andbar() for
both the base class and the derived class – as we would if they were explicitly
overridden in the derived class.

Figure 1 shows that the inherited methods are not fully covered by the original test
cases. The diagram includes the “make-believe” versions offoo() andbar() (shown
enclosed in {braces}) which represent their inheritance inDerived .

foo() // Exercised in A1
bar() // * UNTESTED *
helper() // Exercised in A1

Base

{ foo() } // * UNTESTED *
{ bar() } // Exercised in A2
helper() // Exercised in A2

Derived

Figure 1: The inherited methods
have not been fully exercised

3.3. We Need Better Tests
To achieve 100% coverage an enhanced test set is required:

void better_test_driver() {
Base base;
Derived derived;
base.foo(); // Test Case B1
base.bar(); // Test Case B2
derived.foo(); // Test Case B3
derived.bar(); // Test Case B4

}

The additional test cases help ensure that the interactions between the public methods
and the private helper functions have been fully exercised, as shown in figure 2.

foo() // Exercised in B1
bar() // Exercised in B2
helper() // Exercised in B1

// and B2

Base

{ foo() } // Exercised in B3
{ bar() } // Exercised in B4
helper() // Exercised in B3

// and B4

Derived

Figure 2: Better test cases give 100%
inheritance context coverage



©IPL Information Processing Ltd

5

3.4. Traditional Coverage Is Not Enough
It is clear that when methods are inherited by a derived class some further testing is
necessary. This is true both for those methods which have been inherited unchanged
and for those which have been overridden. Coverage measurement needs to be more
context-dependent, recording the class of the specific object on which the method was
executed (i.e. the context in which the coverage was achieved). Coverage achieved in
the context of one derived class should not be taken as evidence that the method has
been fully tested in the context of another derived class.

Unfortunately, traditional structural coverage metrics do just that. They treat any
execution of a routine – whether it is in the context of the base class or a derived class
– as equivalent. ThusBase::bar() is wrongly considered “100% covered” when it
has been exercised in the context of classDerived only.

As figure 3 shows, OO code may be wrongly considered 100% covered by traditional
metrics when in fact it has been 50% covered in the context of one derived class and
50% covered in the context of another derived class.

Figure 3: Only 50% coverage of inherited methods in each derived
class yet Base appears fully tested using traditional metrics

This problem applies toall the traditional structural coverage metrics – none of them
take into account the interactions between inherited base class methods and the
overridden methods in each derived class.

3.5. What Is Inheritance Context Coverage?
Inheritance context coverage is not a single metric, but rather a way of extending the
interpretation of (any of) the traditional structural coverage metrics to take into
account the additional interactions which occur when methods are inherited.

Inheritance context coverage provides alternative metric definitions which consider
the levels of coverage achieved in the context of each class as separate measurements.
The inheritance context definitions regard execution of the routine in the context of



©IPL Information Processing Ltd

6

the base class as separate from execution of the routine in the context of a derived
class. Similarly, they regard execution of the routine in the context of one derived
class as separate from execution in the context of another derived class.

To achieve 100% inheritance context coverage, the code must be fully exercised in
each appropriate context.

3.6. Definition
To take a specific example, the inheritance context coverage variant of decision
coverage for a routine in a particular context is simply the number of decision
branches exercised in the context divided by the total number of decision branches in
the routine.

The overallinheritance context decision coveragefor the routine is then defined as
the average of the inheritance context decision coverage in each context appropriate to
the routine. For a routine defined in a base class the appropriate contexts are the
context which corresponds to the base class along with those corresponding to each
derived class which inherits the routine unchanged. Note that the routine need not
(more accurately,cannot) be tested in the context of derived classes which provide an
overriding definition of the routine.

Thus the overall inheritance context decision coverage for a routine is given by:

InheritanceContextDecnCoverage
DecnBranchesExercisedInContext

NumberOfDecnBranchesInRoutine NumberOfContexts

i
i

NumberOfContexts

=
×

×=
ÿ

1 100%

As with the standard coverage metrics, system-wide averages of inheritance context
coverage (across all routines in the system) can also be defined.

3.7. An Example Using Decision Coverage
Let’s assume that functionsfoo() and bar() shared significant amounts of
common code. In an attempt to simplify the class, the functions are merged into one,
with a boolean parameter determining the behaviour2:

class Base {
public:

void foo_or_bar(bool flag) {
...
if (flag) {

...
helper();
...

} else {
...
helper();
...

}

2 This example is for the purposes of explanation only. In practice such a transformation would not
normally be made – if “foo-ing” and “bar-ing” are separate enough concepts to have different names
then it is unlikely that the merged method would be functionally cohesive. A better solution would be to
extract the common code into separate private methods invoked by bothfoo() and bar() .



©IPL Information Processing Ltd

7

...
}

private:
virtual void helper() { ... }

};
class Derived : public Base {
private:

virtual void helper() { ... }
};
void test_driver() {

Base base;
Derived derived;
base.foo_or_bar(false); // Test Case A1
derived.foo_or_bar(true); // Test Case A1

}

The branches offoo_or_bar() have not been fully tested in the context of either
Base or Derived – only 50% inheritance context decision coverage has been
achieved in each case.

Note that in this example traditional decision coverage would misleadingly indicate
100% coverage ofBase::foo_or_bar() .

3.8. What Are The Contexts?
In the examples above the valid contexts for the inherited methods (Base::foo()
andBase::bar() or Base::foo_or_bar() ) are simply “Base” and “Derived”.

For the methodBase::helper() the sole valid context is “Base”, since the method
is not inherited byDerived but is instead overridden.

For the overriding definitionDerived::helper() the only valid context is
“Derived”.

3.9. Hierarchical Integration Testing
Let us consider the level of testing required for inherited methods which are inherited,
using the example shown in figure 4.

Base methods

Base

New methods

Inherited methods

DerivedA

New methods

Inherited methods

DerivedB

Figure 4: The software under test

The Hierarchical Integration Testing (HIT) approach to unit testing was proposed as a
technique for ensuring thorough class testing (see [Harrold] for full details). HIT
recommends that as a first step all methods be tested fully in the context of a
particular class (the base class or, for abstract base classes, a particular derived class).

For a base class this would typically be interpreted as a coverage requirement of 100%
decision coverage of each defined method in the context of the particular class. This



©IPL Information Processing Ltd

8

criterion is also known as “Once-Full” coverage and is equivalent to the minimum
traditional coverage requirement for thorough unit testing.

This recommendation applies to all classes, so that re-definitions of a method in a
derived class (“overridden” methods) are tested with the same thoroughness as the
original base class definition.

3.9.1. Interaction Coverage
The HIT approach further recommends that any methods which are inherited by a
derived class and which interact with any re-defined methods should be re-tested in
the context of the derived class. The focus of this re-testing is to exercise the
interactions between the inherited methods and the re-defined method(s) – primarily
the calls between the methods. This recommendation could be interpreted as a
coverage requirement of 100% call-pair coverage of the inherited methods in the
context of each derived class.

3.9.2. Strict Coverage
In practice the integration test cases which exercise the interactions between methods
are often spread throughout the complete test suite for the class.

Rather than separating the integration test cases out, sometimes the easiest way to
ensure that interactions are thoroughly re-tested is to re-runall of the base class test
cases. This conservative approach can be enforced through the application of a stricter
coverage requirement, namely that 100% decision coverage is achieved for each base
class method in the context ofeveryderived class by which it is inherited.

3.10. Achieving Inheritance Coverage Is Easy
During unit testing the effort required to achieve inheritance context coverage is not
significantly greater than that required to achieve coverage according to traditional
metrics.

Typically, no additional test cases are required. Instead, test cases already written to
test the base class are used to re-test the inherited methods in the context of the
derived class. The test cases form aparallel inheritance hierarchywhich mirrors the
inheritance structure of the software under test and enables base class test cases to be
easily re-used to test derived classes (see Figure 5).

Test Base methods

TestBase

Test new methods

Re-test inherited
methods

TestDerivedA

Test new methods

Re-test inherited
methods

TestDerivedB

Figure 5: Test classes and software under test
form parallel inheritance hierarchies



©IPL Information Processing Ltd

9

This re-use of base class test cases has the additional benefit of automatically testing
the design for conformance to the Liskov Substitutability Principle (LSP). The LSP is
an important object-oriented design principle (described in [Liskov]) which helps
ensure that inheritance hierarchies are well-defined. The use of a parallel inheritance
hierarchy also forms the basis of the PACT method described in [McGregor].

The only costs for this re-use are the (small) initial effort to ensure that the test cases
are structured so as to be re-usable and the CPU time required to re-run the test cases.

4. State-Based Context Coverage
In most object-oriented systems there will exist a number of classes which can best be
described as “state machines”. Objects of these classes can exist in any of a number of
distinct states, and the behaviour of each class is qualitatively different in each
possible state – the behaviour of the class is state-dependant.State-based context
coverageis designed to measure how fully this behaviour has been tested.

Consider a typical class with state-dependent behaviour: a bounded stack. A bounded
stack can be in one of three possible states: ‘empty’, ‘partially full’ or ‘full’. The
behaviour of the stack is qualitatively different in each state. For example, thepop()
operation removes and returns the top element from the stack in states ‘partially full’
or ‘full’ but throws an exception and leaves the stack unmodified in state ‘empty’.

The class interface for the bounded stack class is shown below:

class BoundedStack {
public:

BoundedStack(size_t maxsize);
~BoundedStack();
void push(int);
int pop();
struct underflow : std::exception { };
struct overflow : std::exception { };

};

4.1. Black-Box Testing using Entry-Point Coverage
When testing a class, the first step is to write test cases to exercise the public interface
to the class:

int test_driver() {
BoundedStack stack(2);
stack.push(1);
stack.pop();
// destructor called implicitly at end of block

};

We can use entry-point coverage to ensure that the test cases exercise each of the
methods of the class. The test cases above achieve 100% entry-point coverage.

However, it is clear that this test set does not fully exercise theBoundedStack class;
the stack never becomes full and an exception is never thrown.



©IPL Information Processing Ltd

10

4.2. Using White-Box Coverage Metrics
If entry-point coverage does not ensure thorough testing, perhaps we should use a
stronger coverage requirement, say, 100% decision coverage. Unfortunately, there are
disadvantages to the adoption of such a requirement.

One factor is that there may be decisions in the code which do not correspond to
features of the public interface. Typical examples include error handling code and
defensive programming idioms. In these cases, 100% decision coverage may be
difficult to achieve.

A more significant problem is the inability of traditional structural coverage metrics to
identify code which is missing altogether. For example, consider what would happen
if the BoundedStack implementor forgot to check for the stack-empty condition in
pop() . Requiring 100% decision coverage would not help find this fault – the
missing condition is not there to be covered!

4.3. We Can Do Better
Actually, we can write a better test set than that required by any traditional structural
coverage metric, and without any knowledge of the internal details of the class.

The UML state transition diagram (see figure 6) shows how the behaviour of the class
changes, depending on the current state. This type of diagram is commonly used to
describe the state-dependent behaviour of classes

empty

partially full

full

H

construction

H

destruction

destruction

destruction

push()

push()
pop()

pop()

push()

pop()

push()

pop()

Throws
BoundedStack::underflow

Throws
BoundedStack::overflow

Figure 6: State transition diagram for BoundedStack

We can use the additional information provided in the state transition diagram to
design a test set which thoroughly exercises theBoundedStack class.

4.4. Writing State-Driven Test Cases
The aim of our test design is to exercise every method in every possible state. In the
improved test set which follows, thepush() andpop() methods are invoked on an
empty, partially full and full stack:



©IPL Information Processing Ltd

11

int better_test_driver() {
BoundedStack stack(2);
stack.push(3); // push() when empty
stack.push(1); // push() when partially-full
try { stack.push(9); } // push() when full
catch (BoundedStack::overflow) { } // expected to throw
stack.pop(); // pop() when full
stack.pop(); // pop() when partially-full
try { stack.pop(); } // pop() when empty
catch (BoundedStack::underflow) { } // expected to throw
// destructor called implicitly at end of block

};

The crucial issue is: does this test set fully exercise theBoundedStack class?

State-based context coverage is designed to answer this question.

4.5. State-Based Context Coverage
State-based context coverage is similar to inheritance context coverage: it provides
alternative definitions of the traditional structural coverage metrics. The alternative
definitions differ in that they separately measure coverage in different contexts.

With inheritance context coverage the contexts depend on the inheritance structure of
the software under test. Similarly, with state-based context coverage the contexts
correspond to the potential states of objects of the class under test.

Thus the state-based context coverage metrics regard execution of a routine in the
context of one state (that is, when invoked on an object in that state) as separate from
execution of the same routine in another state. To achieve 100% state-based context
coverage, the routine must be exercised in each appropriate context (state).

4.6. Definition
The state-based context coverage variant of entry-point coverage for a class (in the
context corresponding to a particular state) is given by the number of methods which
have been invoked on objects in that state divided by the total number of methods in
the class.

The overall state-based context entry-point coverage is then defined as the average of
the state-based context entry-point coverage in each state appropriate to the class.

Thus the overall state-based context entry-point coverage for a routine is given by:

StateBasedContextEntryPointCoverage

MethodsExercisedInState

NumberOfMethodsInClass NumberOfStates

i
i

NumberOfStates

=
×

×=
ÿ

1 100%

Note that, for the purposes of state-based context coverage, constructors are not
considered to be methods of the class, in the sense that when they are invoked the
object does not (yet) exist, and thus there is no state with which to associate the
coverage.

Alternatives are similarly defined for each of the traditional structural coverage
metrics.



©IPL Information Processing Ltd

12

As with the standard coverage metrics, system-wide averages of state-based context
coverage (across all classes in the system) can also be defined.

4.7. What Are The Contexts?
The contexts for state-based context coverage are just the states appropriate to the
class. Thus, in the bounded stack example the contexts are “empty”, “partially-full”
and “full”.

Unfortunately, the presence of these states is a design feature which is not directly
visible in the code. In order for a tool to automatically gather state-specific coverage
information, the code must be changed so that it defines the possible states and so that
the tool can determine the current state.

The simplest solution is to define an additional member function which returns a
string containing the current state. For example:

class BoundedStack {
public:

...
private:

const char* cppca_user_context_function() const {
if (num_elements == 0) return "empty";
else if (num_elements == max_elements) return "full";
else return "partially-full";

}
};

When provided by the user, this specially-named member function is used
automatically by Cantata++ to determine the current state while gathering coverage
data.

4.8. How Well Did We Do?
Using the test cases frombetter_test_driver() to test theBoundedStack , we
find that we still haven’t achieved 100% state-based entry-point coverage. The
destructor has not been exercised in the “partially-full” or “full” states.

Although state-based coverage does not apply to constructor functions, it does apply
to destructors. Exercising destructors in all states helps ensure that all allocated
resources are properly freed.

The following, further enhanced, test set does achieve 100% state-based entry-point
coverage:

int even_better_test_driver() {
BoundedStack stack(2);
stack.push(3); // push() when empty
stack.push(1); // push() when partially-full
try { stack.push(9); } // push() when full
catch (BoundedStack::overflow) { } // expected to throw
stack.pop(); // pop() when full
stack.pop(); // pop() when partially-full
try { stack.pop(); } // pop() when empty
catch (BoundedStack::underflow) { } // expected to throw
BoundedStack stack2(3);
stack2.push(6); // stack2 is partially-full
BoundedStack stack3(1);



©IPL Information Processing Ltd

13

stack3.push(6); // stack3 is full
// destructors called implicitly at end of block for
// stack (empty), stack2 (partially-full) and stack3 (full)

};

4.9. Extra Effort Gives Extra Benefit
State-based context coverage is unusual because it requires the user to provide
additional information (in the form of the additional member function to return the
current state).

In contrast, traditional structural coverage metrics such as decision and condition
coverage are based purely on the structure of the software under test and therefore
require no additional information. As a result, traditional structure coverage metrics
are typically weak at highlighting “faults of omission” – requirements which have
simply not been implemented. Suppose, through an oversight, that the code to
implement a particular requirement is missing. There is no hint in the code that the
requirement exists, and no traditional structural coverage metric will force the testing
of the missing requirement.

The use of an independent source of additional information means that state-based
context coverage has the potential to go beyond the constraints of traditional structural
coverage metrics and highlight these faults of omission.

For example, areas of unimplemented functionality can be identified by analysing
those areas for which state-based entry-point context coverage has not been achieved
while 100% traditional (non-context) decision coverage has been achieved.

4.10. Achieving State-Based Coverage
Achieving 100% state-based entry-point coverage typically requires more test cases
than are required for traditional entry-point coverage and fewer than are required for
traditional decision coverage. Moreover, because the test cases which are required to
achieve state-based entry-point coverage are based on the design they are usually just
those which would form a normal black-box test set, particularly if an approach such
as [Binder]’s “FREE” is used. This reduces the need to write additional test cases
purely to achieve a defined coverage target.

5. Thread-Based Context Coverage
The concept of context coverage which underpins both inheritance context coverage
and state-based context coverage can also be used to assist with other coverage
analysis problems.

For example, when testing a multithreaded application, traditional structural coverage
metrics will “aggregate” the coverage achieved by all the threads into a single
coverage value.

The context coverage approach can be applied here to maintain separate coverage
information for each thread. As with state-based context coverage, a user-provided
function is used automatically by Cantata++ to determine the current context:



©IPL Information Processing Ltd

14

const char* cppca_user_context_function() const {
static char buffer[16];
sprintf(buffer, "%x", OS::Threads::GetCurrentThreadID());
return buffer;

}

The additional coverage information provided through context coverage can be used o
ensure that each individual thread is thoroughly tested. Moreover, the raw coverage
data (which statements and decisions are executed in which threads) can be used to
analyse how the software under test actually behaves in the presence of complex
thread-interaction issues.

6. Conclusion
Traditional structural coverage metrics are inadequate measures of test thoroughness
for object-oriented software systems. New object-oriented context coverage metrics
are required to ensure thorough testing. Inheritance, state-based and thread-based
context coverage metrics are a useful and practical addition to the unit tester’s tool set.

Inheritance context coverage can be used, in conjunction with traditional structural
coverage metrics and with little additional cost to ensure that polymorphic interactions
between methods are fully tested in each derived class. Similar techniques can be
applied to uses of template-based compile-time polymorphism.

State-based context coverage can be used, again in conjunction with traditional
structural coverage metrics, to ensure that classes whose behaviour depends on an
internal state have been thoroughly tested. In particular, state-based entry-point
coverage is an appropriate metric for black-box unit-testing of classes with state-
dependent behaviour.

The underlying techniques of context coverage can also be extended to apply to assist
with other coverage problems, such as the testing of multi-threaded applications.

7. References
[Binder] Binder,B.,The FREE Approach to Testing Object-Oriented Software: An

Overview, http://www.rbsc.com/pages/FREE.html.

[Harrold] Harrold,M.J. and J.D.McGregor,Incremental Testing of Object-Oriented
Class Structures,
http://www.cs.clemson.edu/~johnmc/papers/TESTING/HIT/hit.ps.

[Liskov] Liskov, B. and J.Wing,A Behavioral Notion of Subtyping, ACM
Transactions on Programming Languages and Systems, Vol 16, No 6,
November, 1994, pages 1811-1841.

[McGregor] McGregor,J.D. and A.Kare,PACT: An Architecture for Object-Oriented
Component Testing, Proceedings of the Ninth International Software
Quality Week, May 1996.


